Assignment: Design a system that will maintain the speed of a motor at 110 ± 15 RPM. The following information may be helpful in planning your design.

- The speed of the motor, measured in revolutions per minute (RPM), is determined by the voltage applied to the input of the motor. This relationship for the no-load condition is shown in Figure 1.

- The motor contains a tachometer that produces a sinusoidal output with a peak-to-peak voltage proportional to the speed of the motor. This relationship is illustrated by the following equation,

 \[\text{RPM} = 27.23 \times (V_{pp} - 4) \]

- A digital-to-analog converter outputs a discrete analog voltage that is proportional to the ratio of the input digital count to the maximum number of counts. The maximum output voltage, \(V_o \), depends on the full-scale voltage, \(V_{fs} \),

 \[V_o = V_{fs} \times \frac{\text{count}}{2^n} \]

 Where \(n \) is the number of D/A input bits, and count is the binary value of the input to the D/A converter at a given time. You may assume \(V_{fs} = 15.0 \text{volts} \) and \(n = 8 \).

![Graph](image)

Figure 1: Applied DC Motor Voltage vs. Motor RPM